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What this talk is about

* An analysis of the candidates, targeted
towards an FPGA implementation

— Attempts to reflect what an intelligent
designer would do, for a hand-crafted
implementation

— Applies to both ASICs and FPGAs
» Target fabric: Xilinx Virtex FPGA
» Target cycle time: 50 MHz

— Always pipeline within a round




What this talk is not about

» Actual implementations
— It takes considerable time & effort to hand
specify and lay out a datapath

» Also wish to explore tradeoffs within the
algorithms

— HDL synthesis introduces performance
artefacts
* "Final" implementations would probably not use
HDL synthesys

* A rehash of the paper

What a hardware designer
cares about: Area

» The amount of hardware resources required
to implement a design
— Smaller area is better

* On a Xilinx Virtex FPGA the resources are

— 4-LUTs
e A 4 input Lookup Table

— can implement any Boolean
function of 4 inputs

« Associated with a flip flop

— BlockRAM
« An 8 address, 16b wide, dual ported memory
* Previous generation parts lacked this feature
* Upcoming devices have more memory
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What a hardware designer
cares about: Latency

The number of clock cycles required to
encrypt a single block

— Lower latency is better

Limiting factor in some cases

— A single data stream in CFB mode

Past a given point, adding more
resources does not improve latency

Bandwidth (blocks/cycle)

What a hardware designer
cares about: Bandwidth

The maximum number of blocks which
can be processed per cycle
— Greater bandwidth is better
— Total throughput assuming no feedback

« ECB mode

e Counter mode

« LOTS of independant CFB data streams
Adding resources will increase the
bandwidth




What a hardware designer
cares about: Subkey setup

 The time and resources needed to
generate a set of subkeys

 Some applications do not care
— POS terminals

— Other constant or nearly-constant key
applications

 Some applications it is critical

— Encrypted packet router might need to
decrypt each packet header with a unique
key

Part Sizes

« Low cost parts (Spartan-I1I)

— XC2S15: 384 LUTs 4 BlockRAM

— XC2S50: 1,536 LUTs 8 BlockRAM

— XC2S200: 4,704 LUTs 14 BlockRAM
» High density parts (Virtex)

— XCV300: 6,114 LUTs 16 BlockRAM

— XCV800: 18,816 LUTs 28 BlockRAM
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Very poor latency

— Expensive central round
» Multiplication is slow

Moderately heavy area requiremen
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Too man ecial cases

---:-MARS latency
MARS bandwidth
T TT T T[T 77T T T 17T T T T TT

[150

LI I | LI I I | I LI B I | | T
1000 2000 3000 4000
Area (4-LUTs)

[ ] Latency (cycles)

MARS subkey generation

* Slow to generate
— 270 cycles
* Area inexpensive
— 50-300 LUTs depending on implementation

* Unpipelineable
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Bandwidth (blocks/cycle)

RC6
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1 - Multiplication is slow, 20 rounds -

1+ Reasonably good area requirements

_ — No BlockRAMs required -
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RC6 subkey generation

* Slow to generate
— 260 cycles
* Area inexpensive
— 300 LUTs
* Unable to run concurrently with
encryption
— Must go through loop 3 times
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Bandwidth (blocks/cycle)
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Rijndael

Very good latency

— Few rounds, lots of parallelism, quick
operations

Great bandwidth

Area increases when encryption &
decryption is required

— Also requires 8 BlockRAMs/round for
S - b 0 X e S Rijndael (one way) latency

Rijndael (one way) bandwidth

Rijndael (both) latency
Rijndael (both) bandwidth
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Rijndael subkey generation
(128b key size)

Fast to generate

— 36 cycles

Area inexpensive

—128-160 LUTs, 2 or 0 BlockRAMs
Can be pipelined concurrently with
encryption

— But not with decryption

— Slower then encrypting a block
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Serpent

* Very good latency
— Very short rounds

» Area increases when encryption &
decryption is required

* Very high initial cos
— But good bandwidth once the cost is met

UL B L L
5

o

=L B L L
S

S

O [ ] Latency (cycles)

TT T Jof T T T[T 17T
o

. o\
<
:‘:Serpent (one way) latency
Serpent (one way) bandwidth
:E:Serpent (both) latency

Serpent (both) bandwidth

TT 1T I T T 1T T 11T I T 11T I T 1T I LI I | | LI I I | I LI B I | | T TT I T 1T
1000 2000 3000 4000
Area (4-LUTs)

15

Serpent subkey generation

» Fast to generate
— 32 cycles
* Area expensive

— Requires its own copies of the S-boxes
« Except for "very compact" serpent implementations

- 1500-2000 LUTs
* Pipelineable

e Can be run concurrently with encryption
— But not with decryption
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Bandwidth (blocks/cycle)
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Twofish

* Good latency & bandwidth
— Round is reasonably fast

* Good area cost
— No BlockRAMs required

— No significant penalty f ncryption &
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Twofish subkey generation

» Fast to very fast generation
— 4 to 20 cycles

 Moderate area cost
— 512 to 1300 LUTs

* Independently generatable subkeys

— Can be performed concurrently with
encryption or decryption

— Can eliminate almost all subkey generation
time
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Bandwidth (blocks/cycle)

MARS bandwidth
RC6 bandwidth

|—ll— Twofish bandwidth

Rijndael (encrypt only) bandwidth

Rijndael (both) bandwidth
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Summary: Mars

 Mars is a very poor choice from a

hardware viewpoint

— Expensive
* requires both LUTs and BlockRAM memories
» 3 separate round types
« High initial cost

— Very poor latency

— Very slow subkey generation
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Summary: RC6

» RC6 is a poor choice from a hardware
viewpoint
— Moderately high latency

* Mostly due to the use of multiplication and
more rounds

— Very slow subkey generation

» Touches each subkey 3 times, sequential
dependencies

+ Reasonable size
+ No BlockRAMs required
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Summary: Rijndael

* Rijndael is a good choice from a
hardware viewpoint
+ Reasonably compact
+ Great latency and bandwidth
— Requires BlockRAMs or similar memories

— Requires a separate pipeline for encryption
and decryption
» Can share S-boxes between pipelines
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Summary: Serpent

e Serpent is fair choice from a hardware
viewpoint
+ Very good latency and bandwidth
— Very high initial cost
+ No BlockRAMSs required
— Area expensive subkey generation

— Requires an additional pipeline for
encryption and decryption
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Summary: Twofish

» Twofish is a good choice from a
hardware viewpoint
* Good latency and bandwidth
+ Good compact implementation
+ No BlockRAMs required

+ GREAT subkey generation
« Can be done concurrently with encryption or
decryption
» Or doesn't consume too much area
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Conclusions
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